
1

Multi-core Timing Analysis

Ian Broster, Christos Evripidou (Rapita)

Francisco Cazorla, Enrico Mezetti, Suzana Milutinovic (BSC)

An industrial approach for multi-core airborne software timing

verification using DO-178C/CAST-32A

2

Multi-core processors (MCP) are (really) here

▪ They are available and lots of people trying to use them in

critical systems

▪ Big issue:

▪ “How much does an application on one core affect another?”

▪ Software timing/contention

▪ Our solution: new MCP timing analysis process and

tooling

1. Methodology

▪ V-model with traceability to objectives in CAST-32A

2. Technologies for timing tests

▪ Microbenchmarks, contenders, RapiTime, Automation

3. Certification evidence

▪ Tool qualification and traceable process

3

Industrialization of research in numbers

4+ Research Projects

ASC (NATEP, UK)

SDESI – (Catalan, Spain)

SECT-AIR – (ATI UK)

PROXIMA – (EU FP7)

(and a few older ones)

6 Industrial stakeholders

X Y Z

3 real projects ongoing

3 Technologies

4

Challenges with multi-core

Processors

5

What’s so hard with multi-cores?

Each core can influence other cores

 Timing/delays/contention

FAA/CAA rationale for using multi-cores [CAST-32A]

• Potential performance improvement

• Obsolescence of single-core

6

FAA/CAA: CAST-32A

▪ From CAST-32A (paper from FAA & others)

▪ “several applications may therefore attempt to access the same shared

resources of the MCP (such as memory, cache and external interfaces) at

the same time causing contention for those resources”

▪ “..interconnects to handle and arbitrate the demands for MCP resources,

but the contention for shared resources between applications usually

causes delays in access to resources…”

▪ “There could be functional interference between applications via MCP

mechanisms”

▪ “…to behave in a non-deterministic or unsafe manner, or could prevent

them having sufficient time to complete the execution of their safety-critical

functionality”.

7

8

▪ Application reading x Kb of data from memory on one core

▪ Opponents also reading data from memory on some other cores

▪ Used RVS for timing measurements

▪ Integration with PikeOS PROXIMA tracing mechanism

▪ Parameters:

▪ Size of data

▪ Number of opponents enabled

▪ P4080 Memory architecture

An experiment on Cache Impact

9

10

Adding Opponents on other cores

L1 Cache L2 Cache

11

Larger Data size with an opponent

12

Big data read with 1, 2, 3 Opponents

500%

14

Multi-Core Methodology

15

Principles for MCP/WCET timing analysis

▪ P1: "The best model of a processor is the processor itself"!

▪ No cost-effective static model of the processor

▪ P2: “Measurements, measurements and more measurement (and analysis)”.

▪ Need to have “built-in” observability channels

▪ Define minimum set of what are you looking for

▪ Combine measurements with static analysis

▪ P3: “You shall trust no-one”.

▪ Verify all key assumptions by evidence based analysis

▪ More detailed for “key” contributors

▪ P4: “No tool (one-button) solution exists”.

▪ Engineering wisdom for problem formulation and analysis of results

▪ Embedded experts on experimental design and running tests

▪ Automation of the evidence generation phase

16

Multi-core timing analysis for DO-178C

Verification

Objectives

Scope

Definition

Test Design

Test

Implementation

Verification

Results

Analysis

Test Results

Tools, automation,

experience

“Does the level-1 cache partitioning

prevent timing overrun of the

applications?”

“Is the partitioning robust?”
Understand hardware. E.g.

The target features a shared L2 cache with

the capability of partitioning it between

cores.

Want to check no additional L2 miss is

incurred because of multicore execution

Automatically build and

run test using catalogue

of microbenchmarks and

contenders

Define test for each requirement

Select, adapt and tailor

microbenchmarks

Assessing the level of isolation in the LLC

LLC-01-01 benchmark selected and

tailored

Consisting in executing X against YY in

Core N,

under the condition C, with expected

results Z…etc.

“TR1: the test shall measure and assess

the impact on execution time of L1 cache

for core 0 when cores 1-7 are competing

for 60% of the cache access”

17

MuBT

▪ Multi-core Microbenchmarks

▪ Characterise Multicore timing

▪ Identify interference

▪ Verify HW/RTOS/SW

assumptions

▪ Developed by BSC + Rapita

▪ Result of EU project

collaboration over 8 years

18

Microbenchmarks and contenders

▪ Each test is implemented as a set of microbenchmark configurations.

▪ Use of performance monitoring counters (PMC)

▪ Have a library of PMCs and tests (and ways to measure)

▪ Opponents, Contenders, “demonic adversaries”

▪ Have a library of contenders to exercise specific parts of the MCP

▪ Automatic configuration of combinations and execution of tests

TuA

TuA

TuA

TuA

X 0 \\ Entering

HEADER

0 123 \\ μB UID

0 1 \\ μB

configuration UID, End of HEADER

10 1315645 \\ IPoint Timestamp

0 1 \\ PMC UID

0 560 \\ PMC read

11 1329650 \\ IPoint Timestamp

0 1 \\ PMC UID

0 16944 \\ PMC read

X 0 \\ Entering

HEADER

0 123 \\ μB UID

0 1 \\ μB

configuration UID, End of HEADER

10 1315645 \\ IPoint Timestamp

0 1 \\ PMC UID

0 560 \\ PMC read

11 1329650 \\ IPoint Timestamp

0 1 \\ PMC UID

0 16944 \\ PMC read

X 0 \\ Entering

HEADER

0 123 \\ μB UID

0 1 \\ μB

configuration UID, End of HEADER

10 1315645 \\ IPoint Timestamp

0 1 \\ PMC UID

0 560 \\ PMC read

11 1329650 \\ IPoint Timestamp

0 1 \\ PMC UID

0 16944 \\ PMC read

19

Test Design

Understand the

hardware (in

general)

Understand your

specific

application

21

results

Micro

Benchmarks

Evidence gathering using RapiTime

Test

configurations

results
RapiTime:

• Is an automated timing analysis tool

• Provides High watermark (HWM) & worst-case

execution time (WCET) analysis

• Finds timing problems and helps optimize your code

23

Multi-core timing analysis for DO-178C

Verification

Objectives

Scope

Definition

Test Design

Test

Implementation

Verification

Results

Analysis

Test Results

Tools, automation,

experience

Execute tests and collect timing data (PMCs,

timing)

Analyse raw results

Draw conclusions (partially automated)

Check no additional L2 miss occurred

Conclude whether isolation is guaranteed

Generate multicore analysis report

Supporting certification arguments

Traceability to requirements and needs

Generated structured document with

traceability info

Summarizing experiment plans design,

implementation and results

24

Multi-core Test Examples

25

Zynq UltraScale+

26

Requirements and Understanding

▪ Requirement:

▪ REQ-1234: The function muB_L2A_01 shall complete its execution

in 6*10
-8

cycles.

▪ Understanding:

▪ The board is Zynq UltraScale+.

▪ Platform support package: bare metal

▪ muB_L2A_01 is a memory-intensive function.

▪ muB_L2A_01 fits in L2 cache, but not L1 cache.

▪ muB_L2A_01 is statically allocated to CORE 0.

▪ Interference channels

▪ L2 Cache evictions

27

Simplified UltraScale+ Memory Hierarchy

DRAM Memory Device

Memory Controller

Shared Cache (L2)

Shared Bus

CORE 0 CORE 1 CORE 2 CORE 3

L1 L1 L1 L1

28

Test Design

▪ Objective:

▪ Identify the maximum L2 cache contention that ensures that the Task

under Analysis (TuA) finishes within 6*10
-8

cycles.

▪ Task Under Analysis: muB_L2A_01

▪ Required metrics:

▪ L2 accesses

▪ L2 misses

▪ CPU cycles

▪ Added metrics: IL1 misses, DL1 misses, External memory accesses

▪ Repeat 10 times.

▪ Scenarios:

▪ S1: Execute muB_L2A_01 with no resource contenders.

▪ S2: Execute muB_L2A_01 with one L2 cache resource contender.

▪ S3: Execute muB_L2A_01 with two L2 cache resource contenders.

▪ S4: Execute muB_L2A_01 with three L2 cache resource contenders.

29

DRAM Memory Device

Memory Controller

Shared Cache (L2)

Shared Bus

CORE 0 CORE 1 CORE 2 CORE 3

L1 L1 L1 L1

Simplified UltraScale+ Memory Hierarchy

m
u

B
_
L
2

A
_
0
1

30

Task Under Analysis Characterisation

31

Contender Behaviour

32

Test Results

Interference 4.1x

33

Test Results

▪ Strong linear correlation

(up to L2 misses cut-off)

▪ r=0.9844

▪ p=2.79E-30

▪ Regression analysis:

▪ Every L2 miss adds 147

CPU cycles as interference.

▪ New interference channel:

▪ Contention on the bus

40

Industrial Solution and Direction

▪ Rapita and BSC offer this as a service

▪ Currently doing the method for 3 customers

▪ 2 are DO-178C

▪ What makes this an economic industrial solution:

▪ Efficient tooling

▪ Process and traceability

▪ Corpus of library code, contenders and experiments

▪ Expertise and lessons learned

41

Summary

1. Methodology (V-model)

▪ Traceability to objectives in CAST-

32A

2. Technologies for timing tests

▪ Microbenchmarks, contenders,

RapiTime, Automation

3. Certification evidence

▪ Tool qualification and traceable

process

Verification

Objectives

Scope Definition

Test Design

Test

Implementation

Verification

Results

Analysis

Test Results

3 Technologies

